Label2Label: A Language Modeling Framework for Multi-attribute Learning

نویسندگان

چکیده

AbstractObjects are usually associated with multiple attributes, and these attributes often exhibit high correlations. Modeling complex relationships between poses a great challenge for multi-attribute learning. This paper proposes simple yet generic framework named Label2Label to exploit the attribute is first attempt prediction from perspective of language modeling. Specifically, it treats each label as “word” describing sample. As sample annotated labels, “words” will naturally form an unordered but meaningful “sentence”, which depicts semantic information corresponding Inspired by remarkable success pre-training models in NLP, introduces image-conditioned masked model, randomly masks some tokens “sentence” aims recover them based on context conveyed image features. Our intuition that instance-wise relations well grasped if neural net can infer missing remaining hints. conceptually empirically powerful. Without incorporating task-specific prior knowledge highly specialized network designs, our approach achieves state-of-the-art results three different learning tasks, compared customized domain-specific methods. Code available at https://github.com/Li-Wanhua/Label2Label.KeywordsMulti-attributeLanguage modelingAttribute

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Module-Based Framework for Multi-language Constraint Modeling

We develop a module-based framework for constraint modeling where it is possible to combine different constraint modeling languages and exploit their strengths in a flexible way. In the framework a constraint model consists of modules with clear input/output interfaces. When combining modules, apart from the interface, a module is a black box whose internals are invisible to the outside world. ...

متن کامل

Integrative Systemic Therapy in Foreign Language Learning: A Practical Framework for Managing Foreign Language Listening Anxiety among Iranian EFL Learners

This study aimed at proposing a framework based on Integrative Systemic Therapy (IST) for addressing foreign language listening anxiety (FLLA) among Iranian learners of English as a Foreign Language (EFL). The effectiveness of the framework in reducing the levels of FLLA among language learners was investigated when implemented by a therapist as well as by learners independently. To this end, 3...

متن کامل

A Language Framework for Privacy-Preserving Attribute-Based Authen- tication

Existing cryptographic realizations of privacy-friendly authentication mechanisms such as anonymous credentials, minimal disclosure tokens, selfblindable credentials, and group signatures vary largely in the features they offer and in how these features are realized. Some features such as revocation or deanonymization even require the combination of several cryptographic protocols. These differ...

متن کامل

A Multi-attribute Reverse Auction Framework Under Uncertainty to the Procurement of Relief Items

One of the main activities of humanitarian logistics is to provide relief items for survivors in case of a disaster. To facilitate the procurement operation, this paper proposes a bidding framework for supplier selection and optimal allocation of relief items. The proposed auction process is divided into the announcement construction, bid construction and bid evaluation phases. In the announcem...

متن کامل

an investigation about the appropriate stochastic modeling framework for agricultural insurance pricing

با توجه به اینکه بیمه محصولات کشاورزی در ایران بیشتر جنبه ای حمایتی دارد و خسارات گزارش شده عموما بیش از حق بیمه های دریافت شده است، در این پایان نامه به جهت تعیین قیمت بیمه محصولات کشاورزی (گندم دیم) از فرآیندهای نوفه شلیک به عنوان مدلی مناسب استفاده شده است. بر اساس داده های صندوق بیمه کشاورزی از خسارات اعلام شده در سال زراعی 1388-1389 گندم دیم، در این پایان نامه حق بیمه خالص و ناخالص این محص...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lecture Notes in Computer Science

سال: 2022

ISSN: ['1611-3349', '0302-9743']

DOI: https://doi.org/10.1007/978-3-031-19775-8_33